Decommissioning in the oil and gas value chain, steps, challenges and obligations

Module 2
Contents

• Why decommission?
 • Case Study: Brent Spar
 • Orphaned (abandoned) assets
• Definition of decommissioning and goals
• Decommissioning in the oil & gas value chain
• Decommissioning key steps in sustainable decommissioning of oil and gas fields
• Challenges (opportunities) and obligations
• Role of the regulator
• Examples from selected countries
Brent Spar: Case study (1995)

65,000 tonne oil storage and tanker loading buoy and platform

What to do with infrastructure that has reached the end of its working life?
> Follow the law.
e.g. UK Petroleum Act 1998
Where there is no law?

Main points of the Brent Spar case study

• With oil pipeline completed, **BS redundant** (1991) = end of working life
• Shell (operator) proposed deepsea (2.5 km) disposal
• UK Government agreed
• NGO Greenpeace organized world-wide, high-profile media campaign, with team occupying BS for over 3 weeks
• Greenpeace **over-estimated** contaminants and oil on BS
• German Govt publicly opposed deepsea dumping option
• Public opinion supported campaign and boycotted Shell products
• Offshore construction (+ dismantling) sector didn’t support Shell’s option
• Shell **reversed** its decision and BS was towed to Norway and most metal recycled or used to extend a local port near Stavanger
• 1st chemical analysis confirmed Shell’s original estimates of contaminants
• Shell’s **ESIA supported offshore dumping**, but under-estimated **global response** and neighboring countries’ “clean seas” interests
• Shell’s public image significantly negatively affected by whole saga
• **That was 30 years ago. Lots of lessons learnt and guidelines developed**
Why decommission?

Then there is the issue of abandoned (or orphan) infrastructure. Who’s responsible?
Abandoned wells: scale of the problem

• Many more inactive wells than active, of >3.5 million oil/gas wells drilled in N. America\(^1\), only 825,000 currently in production. Remaining **1.2 million** wells presumed inactive.
• Left unplugged or not properly plugged, **inactive wells threaten human/environmental health**.
• Research suggests inactive (or abandoned) wells can **leak NH\(_3\)** (a powerful greenhouse gas) into the atmosphere\(^2\).
• Abandoned wells could also provide a **pathway for surface runoff, brine, or hydrocarbon fluids to contaminate surface/groundwater**\(^3\).
• Wells not properly reclaimed can also contribute to **habitat fragmentation**\(^4\) and **soil erosion**; on-site equipment can **interfere with agricultural land use & threaten wildlife habitat**\(^5\).

What is decommissioning?

- **Isolate from live facilities**: Includes wells, flowlines, gathering stations, production/processing plants, utility plants, pipelines, waste and wastewater systems, accommodation units, access roads and any other physical structure.

- **Dismantle & decontaminate**: Both over-ground and underground equipment and structures.

- **Recycle or dispose**: Sometimes, it makes sense to leave in-situ than remove, particularly for well casing and pipelines.

- **Remediate & restore the site**: Environmental impacts/risks differ for onshore vs. offshore decommissioning.

Source: DNV-GL October 2019
Background, history and definitions

• Issues associated with **decommissioning**, or even the term, were not part of early project development and only briefly included in the project cycle. Nowadays, term is widely used.

• Decommissioning is needed for oil and gas installations, when fields are exhausted, many of which are more than **30 years old**.

• It is the process whereby abandoned (or exhausted) oil and gas fields are **made safe** and land or sea are reclaimed as much as possible **to their original state**, so that they can be used for other purposes.

• It is a source of major liability for countries, operators, contractors and the public and it must be understood if it is to be managed cost-effectively. Note: costs can be significant.

When? How?

The Permian Basin is ground zero for a billion-dollar surge of zombie oil wells

Clayton Aldern, Christopher Collins, & Naveena Sadasivam • Uncategorized

How we calculated the size of the Southwest’s abandoned oil well problem

Using machine learning, we found that states are grossly undercounting orphan wells.

Clayton Aldern & Naveena Sadasivam • Energy

‘No teeth and no funding’: How regulators failed to police the oil industry

Thirty years of data show Texas and New Mexico officials struggled to identify and fine violators.

Naveena Sadasivam • Energy

One researcher’s quest to quantify the environmental cost of abandoned oil wells

Unplugged wells could be quietly leaking millions of pounds of methane in West Texas.
Challenges ahead for many countries

Example from Tanzania: The natural gas processing plant in Tanzania (gas flowed in 2006), on the nearshore Songo Songo island. In 15-20 years from now, it will probably need to be decommissioned. Is the government ready; able to ensure that happens?

Return the site to the original state or condition – traditional text in ESIAs and development projects; in the Songo Songo example (above), a World Bank funded project, the ESIA states “[operator] has been advised to ensure that the land is returned into a state that would be usable by others after decommissioning of its facilities”.
Challenges ahead for many countries

The headaches of decommissioning oil installations – Is Ghana ready?

The West Africa coast has undoubtedly a long and rich oil industry history spanning many decades. It is however pitiable that most energies have been trained on just getting the oil out as it yields quick and ready money, while a relatively lucrative undertaking in the same industry - decommissioning - is paid scant attention.

As is usual in many other fields, African oil nations prefer to outsource when it comes to decommissioning as no country within the sub-region has yet developed the needed skills to play lead roles.

That reality must change however, and as Ghana gets ready to retire wo of its oil rigs in two if its offshore basins, it must show leadership
Site Decommissioning: The Goal

Has the goal changed?
• Is it always sensible, cost-effective, ecologically-appropriate, environmentally prudent, politically-correct or public relations savvy to completely remove all the old oil and gas infrastructure?
• Or, are there alternative approaches?
• Does it depend on the water depth, the local environment, the available technology, and other sea users?
• Environmental authorities, as well as the sector authorities, regularly have discussions with the operators on the use of Best Available Techniques (BAT). More on that (see Module 5).
Decommissioning Process

For offshore/onshore infrastructure, following steps:

1. Project management, planning and engineering
2. Permitting and regulatory compliance
3. Conductor removal
4. Platform Preparation*
5. Mobilization/Demobilization of Derrick Barges*
6. Platform Removal*
7. Pipeline and Power Cable Decommissioning
8. Materials Disposal
9. Site Clearance, Close-out Report

*Not all always relevant onshore; see Module 4 for offshore scopes
Industry value chain

Where and what?
Industry value chain

Where and what?

Deep-sea wells, cuttings piles, production platforms, pipelines & protective deposits

Onshore wells, pipelines, production installations & protective deposits

Refineries, processing plants & storage tanks

Export pipelines, LNG & crude oil vessels

When?

30-40 years after construction or when the oil and gas run out

Petrol stations
Challenge 1: sheer number of sites

e.g. in Kansas (USA): currently 21,648 abandoned wells
Challenge 2: access to sites

e.g. in UK’s North Sea area, forecast 927 wells, plus much more

<table>
<thead>
<tr>
<th>Forecast Activity 2014 to 2023</th>
<th>Central and Northern North Sea</th>
<th>Southern North Sea and Irish Sea</th>
<th>Total UK Continental Shelf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of wells for P&A</td>
<td>510</td>
<td>417</td>
<td>927</td>
</tr>
<tr>
<td>Platform wells proportion of regional total</td>
<td>58%</td>
<td>80%</td>
<td>-</td>
</tr>
<tr>
<td>Topside modules to be removed</td>
<td>146</td>
<td>100</td>
<td>246</td>
</tr>
<tr>
<td>Topside weight to be removed</td>
<td>159,600 tonnes</td>
<td>122,000 tonnes</td>
<td>281,600 tonnes</td>
</tr>
<tr>
<td>Number of platforms</td>
<td>13</td>
<td>91</td>
<td>104</td>
</tr>
<tr>
<td>Substructure weight to be removed</td>
<td>65,000 tonnes</td>
<td>69,000 tonnes</td>
<td>134,000 tonnes</td>
</tr>
<tr>
<td>Number of mattresses to be removed</td>
<td>2,800</td>
<td>2,600</td>
<td>5,400</td>
</tr>
<tr>
<td>Subsea infrastructure to be removed</td>
<td>54,100 tonnes</td>
<td>1,500 tonnes</td>
<td>55,600 tonnes</td>
</tr>
<tr>
<td>Pipelines to be decommissioned</td>
<td>807 kilometres</td>
<td>2,470 kilometres</td>
<td>3,277 kilometres</td>
</tr>
<tr>
<td>Total tonnage coming onshore</td>
<td>288,800</td>
<td>192,600</td>
<td>481,400</td>
</tr>
</tbody>
</table>

e.g. USA has 629 platforms eligible for decom

Source: O&GUK 2014
Challenge 3: sheer size of structures

e.g. USA has 629 platforms eligible for decom

Onshore pipelines and their wayleaves

- Complex
- Highly variable
- Site specific
- Alternative uses
Key Principles of Sustainable Decommissioning Planning

The following 9 principles should be articulated as minimum standards by ESIA departments and regulators:

1. Increasing operator self-regulation
2. Improving corporate social responsibility and social license to operate
3. Reducing environmental & social impact
4. Reclamation & recycling of materials
5. Removal of hazardous waste and materials
6. Rehabilitation of areas affected during operation
7. Financial assurance
8. Iterative process of learning and development
9. Monitoring & enforcement

Source: modified from SUSTAINABLE CLOSURE AND DECOMMISSIONING OF ONSHORE AND OFFSHORE OIL AND GAS ASSETS IN NIGERIA 2015 - www.stakeholderdemocracy.org
Offshore structures before

Source: https://www.ableuk.com/case-study/bp-north-west-hutton/
And after. Decommissioned! Now what?

Source: https://www.ableuk.com/case-study/bp-north-west-hutton/
Who's talking Decommissioning?

Where and When?
Why is safe decommissioning important?

From an environmental point of view:

• Decommissioned facilities/structures/sites still contain some hazardous inventory.
• After decommissioning, the facilities/structures/sites are uncontrolled and unguarded.
• Who is liable for future environmental damages?
• Environmental impacts/risks may remain for decades if not properly decommissioned.
• The site must be made available for productive use after decommissioning.

Reflection – Death in Abandoned Oil Facilities onshore
https://www.youtube.com/watch?v=CMchZjCbcCk&feature=youtu.be
Role of Governmental Regulators for Environmental & Social Sustainability

- Make and update environmental laws, regulations and standards.
- Review environmental and social sustainability of developmental projects based on lifecycle impacts from routine operations and risks from accidents as part of permitting.
- Ensure transparency and public consultation during decision-making.
- Enforce compliance through independent monitoring and inspection.
- Promote best practices through incentives, recognition and knowledge sharing.
- Reduce bureaucracy and facilitate inter-governmental coordination.
Regulatory focus during decommissioning

Best practice requires a standalone ESIA, since the original ESIA is unlikely to cover impacts from decommissioning activities adequately. Decommissioning of offshore facilities is more challenging compared to onshore, and more expensive.

Some key concerns for regulators:
- Demolition versus transfer.
- Removal of subservice services.
- Subsea structures – remove or leave in place?
- Site remediation.
- Post closure environmental monitoring:
 - Whose responsibility?
 - For how long?
 - Funds needed?

Source: DNV-GL October 2019
International summary: UK perspective

• Decommissioning obligations applicable to the UKCS are principally governed by the 1992 OSPAR Convention.
• Although international laws governing decommissioning of offshore installations (creating obligations for States) consist of various norms of different enforceability, they provides at best only a framework within which nations and oil companies conduct their operations.
• The domestic decommissioning legal and regulative frameworks applicable to the UKCS are under a statutory decommissioning regime:
 • Petroleum Act 1998 (“the Act”) (as amended by Energy Act 2008) for offshore (O&G) installations and pipelines.
Around the world on decommissioning

A few main points:

• In most countries, operators of oil or gas installations or pipelines are required to decommission infrastructure at the end of a field’s economic life. THAT’S THE LAW.

• But there are differences in the details, even in the USA, it depends on the region.

• Many African countries have legal framework provisions/laws; if not, guidance is taken from other countries' regulations and international best practice.

• But remember, each country is unique, water depth, technology in use, local skills, sensitivity of the environment, and mindful of the existing contracts and licences.
International Policies & Obligations

e.g. IFC-World Bank Guidelines

Wastewater Discharges
Construction and decommissioning activities may include the generation of sanitary wastewater discharges in varying quantities depending on the number of workers involved. Adequate portable or permanent sanitation facilities serving all workers should be provided at all construction sites. Sanitary wastewater in construction and other sites should be managed as described in Section 1.3.

Hazardous Materials
Construction and decommissioning activities may pose the potential for release of petroleum based products, such as lubricants, hydraulic fluids, or fuels during their storage, transfer, or use in equipment. These materials may also be encountered during decommissioning activities in building components or industrial process equipment. Techniques for prevention, minimization, and control of these impacts include:

- Providing adequate secondary containment for fuel storage tanks and for the temporary storage of other fluids such as lubricating oils and hydraulic fluids

Contaminated Land
Land contamination may be encountered in sites under construction or decommissioning due to known or unknown historical releases of hazardous materials or oil, or due to the presence of abandoned infrastructure formerly used to store or handle these materials, including underground storage tanks. Actions necessary to manage the risk from contaminated land will depend on factors such as the level and location of contamination.
Country examples: Colombia

General decommissioning regulations require no later than 3 months in advance of decommissioning start, licensee to submit study to ANLA (national environmental licensing agency) to include:

- **environmental impacts** existing at beginning of decommissioning stage;
- **management measures**, final restoration activities, and pending actions;
- maps with the **location of the infrastructure** being decommissioned;
- a **list of environmental obligations** derived from administrative acts, identifying those pending & fulfilled, and further compliance evidence; and
- **estimated expenses** and commitment to comply with obligations pending to be fulfilled.

Within 1 month, ANLA verifies status of project and issues an administrative act declaring start of dismantling stage, acknowledging obligations fulfilled, and determining all pending obligations and restoration activities. No later than 5 days following starting date of decommissioning stage, the licensee must submit an **insurance policy** in favour of ANLA, to **guarantee** payment of decommissioning plan’s costs. Policy must be renewed annually during decommissioning and for 3 years after completion.
Country: Mozambique

- Under Petroleum Operations Reg. Decree 34/2015, a detailed **decommissioning plan** to be prepared in consultation with National Petroleum Institute (INP) >2 years before end of project.
- Plan must include an evaluation of the environmental impact of the activities involved in closing and abandonment.
- Operators to follow **good international practices** and **applicable environmental legislation**. Plans evaluated/approved case by case.
- Concessionaires also to **create a fund** for the closure and decommissioning of infrastructure (Art. 40 Petroleum Law No. 21/2014), whereby those with contract for production of, or a use of infrastructure for, petroleum operations shall open a bank account as a **decommissioning fund** and periodically deposit amounts, covering such costs as per the estimates submitted and annually updated by concessionaires.
Country: Iraq (onshore)

- Decommissioning of oil and gas facilities/pipelines governed by the laws (contracting regulations) issued by Min. of Planning.
- In recently granted service contracts, common contractual obligations provide that on the termination of the contract or relinquishment of part of the contract area, the **IOC or contractor shall remove all equipment and installations** in a manner agreed with the relevant national oil company pursuant to an **abandonment plan**, which is to be agreed.
- The IOC also has to issue preliminary and final acceptance certificates in relation to the completion of projects to the national oil company.
- This process may occasionally involve third parties, including insurers such as SGS or Lloyd's.
- There are **no known statutory or publicly known contractual requirements for the provision of security deposits** in respect of future decommissioning liabilities.

![Iraqi Al Basra Oil (export) Terminal](image)

Source: http://www.navy.mil - Photo identified as being free of known restrictions under copyright law, incl. all related and neighboring rights.
Country: Ghana

- Licensee or contractor that operates a petroleum facility is required to submit a decommissioning plan (DP) to the Minister for approval not more than 5 years and not less than 2 years before date on which the petroleum facility is to permanently cease operation or before the expiry of the licence or relevant petroleum agreement.
- The Petroleum (Exploration & Production) Act 2016 also requires a licensee or contractor to establish a decommissioning fund.
- Contractor must treat and plug the abandoned well with the prior written approval of the Commission and in a manner consistent with international best practices and as approved by the Commission.
- A contractor or licensee under an obligation to implement an approved DP is strictly liable for any loss or damage caused in connection with the decommissioning of the facility or the implementation of the DP.
- The E&P Act requires Ghana Nat. Petroleum Corp. (GNPC) and contractors to restore affected areas and remove items with the potential to damage the environment at end of petroleum operation.
- The obligation for decommissioning is placed on the contractor, who must submit annual reports to the EPA for reviews and monitoring.
Case Study: How was it decommissioned?

https://www.youtube.com/watch?v=n1GcO6w5PZQ

18 min

2 min
Key messages

- Two types of oil & gas infrastructure requiring decommissioning are abandoned (or orphan) structures and those related to expired oil or gas fields, or that have reached the end of their working life.
- Decommissioning is the process whereby abandoned (or exhausted) oil/gas fields are made safe and land/sea are reclaimed as much as possible to original state, to be used for other purposes.
- Decommissioning is relevant to all parts of the oil and gas value chain, from exploration to production and sales.
- There are 9 guiding principles that should be articulated as minimum standards by ESIA departments and regulators of decommissioning.
- In most countries, operators of oil or gas installations/pipelines are responsible for decommissioning infrastructure, but in some countries the government plays a major role.